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Abstract
Modern large-scale models increasingly operate in regimes where external performance metrics remain stable while
internal computation reorganizes substantially. Recent AI safety work shows that failures can emerge abruptly as
capability gaps widen between interacting systems [Panfilov et al., 2025] and as untrusted models adapt to exploit
control protocols [Terekhov et al., 2025]. However, these analyses are primarily outcome-based: they characterize when
systems fail from external signals while leaving the internal transition mechanism under-specified.

We introduce isomeric polarization, a structural principle that measures divergence among functionally equivalent
internal realizations of a system during inference. Inspired by pharmacological isomers—molecules with identical
composition but different spatial arrangements that exhibit distinct biological properties—we propose that computational
systems can reorganize internally under fixed identity (parameters, architecture, training), adopting configurations that
preserve nominal equivalence but express qualitatively different emergent behaviors.

Isomeric polarization is not a single fixed metric but a family of observables instantiated via system-specific
decompositions (ensemble components, attention subcircuits, policy channels, or external proxy views). We argue that
polarization characterizes the regime in which a system operates: low polarization indicates homogeneous configuration
(one mode dominates), while high polarization indicates heterogeneous configuration (multiple modes coexist). Regime
transitions—observable via polarization dynamics—can precede qualitative behavioral changes, even when task-level
metrics remain unchanged.

We make three contributions: (1) We formalize isomeric polarization via decomposition-based definitions that avoid
circularity and clarify falsifiability. (2) We demonstrate generality across diverse contexts: reinforcement learning
(exploration vs. exploitation), language generation (creative vs. factual modes), multimodal integration, and adversarial
settings. (3) We empirically validate the black-box proxy instantiation (Polarization-from-Views) across two production
LLMs—Claude Haiku and GPT-4o-mini—using 60 API calls per model and 5,000-permutation null hypothesis testing,
confirming statistically significant regime separation (p< 0.05) with control negative at L3 = 0.000 in both architectures.
The consistent signal across two models from distinct training philosophies provides cross-architecture replication of
the phenomenon.

By positioning internal structural reorganization as a fundamental property of computational systems—rather than
a derivative signal of specific failure modes—this work provides a unifying lens for phenomena ranging from policy
adaptation to creative generation to adversarial robustness.
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1 Introduction

1.1 The External View: Regime Shifts and Capability Gaps
Large language models and other adaptive systems are increasingly deployed in long-horizon, partially observed, and
adversarially influenced environments. In these settings, failures often arise as phase-like transitions: systems appear
stable until a sharp shift produces qualitatively different behavior.

A growing body of AI safety work characterizes these failures from the outside:
Capability-based scaling laws. In red-teaming contexts, attack success scales predictably with capability differen-

tials between attacker and target models [Panfilov et al., 2025]. Key findings include: (i) Attack Success Rate (ASR)
scales linearly with MMLU-Pro performance (Spearman ρ > 0.84); (ii) Attack success follows sigmoid curves based on
capability gap δ = logit(attackercap)− logit(targetcap); (iii) Social science capabilities (psychology, persuasion) predict
ASR better than STEM skills.

Adaptive attack dynamics. Untrusted models can subvert monitoring protocols by exploiting capability asymme-
tries [Terekhov et al., 2025]. Key findings include: (i) Prompt injections embedded in outputs successfully manipulate
GPT-4/GPT-4o monitors; (ii) Defer-to-Resample (DTR) protocols backfire—resampling converts weak attacks into
best-of-n amplification; (iii) Zero-shot jailbreak generation becomes feasible at sufficient capability gaps; (iv) Monitors
rate backdoored code as less suspicious than honest code under injection.

This external view is essential but incomplete. It can predict when failures occur based on capability differentials,
but does not directly instrument the internal process by which a system transitions from coherent behavior to failure.

1.2 The Missing Link: Internal Reorganization Under Fixed Parameters
A key empirical puzzle in modern systems is that apparent stability can coexist with internal drift. Models can
maintain stable aggregate performance while internal computation reorganizes—changing which subcircuits dominate,
how attention routes information, or how competing constraints are resolved.

Recent evidence compounds this concern:

• Safeguard exploitation: Training procedures can elicit harmful capabilities by fine-tuning on models’ own
safeguarded outputs [Anthropic, 2026b], suggesting that “safe-looking” surfaces can conceal fragile or emergent
capabilities.

• Monitor single point of failure: Production-grade classifier defenses [Anthropic, 2026a] achieve strong perfor-
mance against many jailbreaks, but remain vulnerable to sophisticated prompt injection because they observe
only final outputs.

• Disempowerment patterns: Real-world deployment analysis [Benton et al., 2026] reveals concerning behav-
ioral patterns that emerge without explicit adversarial intent, suggesting internal state transitions that precede
problematic outputs.

These observations motivate internal signals that track structural coherence rather than only final outputs.

1.3 Our Proposal: Isomeric Reorganization as Structural Principle
We propose isomeric polarization as a unifying principle: the same model, under the same architecture and parameters,
may realize multiple internal configurations during inference. Under benign conditions, many of these realizations are
functionally equivalent. Under stress—distribution shift, competing objectives, creative pressure—equivalence can
fracture, producing internal divergence observable as polarization.

The pharmacological analogy. In chemistry, structural isomers are molecules with identical atomic composition
but different spatial arrangements. Classic example: thalidomide (C13H10N2O4).

• (R)-enantiomer: Effective antiemetic, used to treat morning sickness

• (S)-enantiomer: Severe teratogen, causes birth defects

• Same atoms, different arrangement → qualitatively different biological properties

We propose an analogous principle for computational systems:

• Same identity (parameters θ , architecture, training)

• Different internal configuration (which circuits dominate, how information flows)
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• Emergent properties differ (semantic interpretation, output distribution, behavioral coherence)

Crucially, we do NOT claim:

• Polarization is necessary for all failures

• Polarization is sufficient to predict all behavioral changes

• Any specific decomposition works universally

Instead, we claim:

• Polarization characterizes the structural regime in which a system operates

• Regime transitions can be observable via polarization dynamics

• This provides a unifying lens for phenomena ranging from adversarial robustness to creative generation

1.4 Contributions
1. Formalization (Section 2): Decomposition-based definitions of isomeric realizations, equivalence, and polariza-

tion. Clear distinction between regimes (quasi-stationary) and transitions (dynamics).

2. Generality (Sections 3–6): Instantiations across reinforcement learning, language generation, multimodal
systems, chain-of-thought reasoning, and adversarial settings. Adversarial is treated as one case, not the case.

3. Empirical validation (Section 4): Cross-architecture PfV validation across two production LLMs with 5,000-
permutation null hypothesis testing. The consistent signal under identical experimental conditions confirms
content-driven divergence rather than measurement artifact.

2 Conceptual Framework

2.1 The Pharmacological Analogy (Developed)
Before formalizing polarization mathematically, we develop the pharmacological analogy to clarify the structural
principle.

2.1.1 Isomers in Chemistry

Definition. Structural isomers are molecules with:

• Identical molecular formula (same atoms, same counts)

• Different spatial arrangement (connectivity or chirality)

• Distinct physical/chemical/biological properties

Example 1: Butane isomers.

• n-butane: Linear chain (C–C–C–C), boiling point = −0.5◦C

• isobutane: Branched (C–C(C)–C), boiling point = −11.7◦C

• Same C4H10, different structure → 11◦C boiling point difference

Example 2: Thalidomide enantiomers.

• Both have formula C13H10N2O4

• (R)-enantiomer: binds to cereblon protein, anti-nausea effect

• (S)-enantiomer: inhibits angiogenesis, causes limb malformations

• Racemic mixture in vivo: Even if (R) is administered, it racemizes to (S) in the body

Key insight: Isomers are not in conflict. They are simply different stable configurations of the same molecular
identity. The system (molecule) can exist in multiple configurations, each with distinct emergent properties.
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2.1.2 Isomers in Computational Systems (Proposed)

Analogous definition. Computational isomers are system states with:

• Identical functional identity (parameters θ , architecture, training procedure)

• Different internal configuration (activation patterns, circuit dominance, information routing)

• Distinct emergent behavioral properties

Example 1: Language model generation modes.

• Configuration A: “Creative mode”—poetic circuits dominate, high entropy, metaphorical language

• Configuration B: “Factual mode”—retrieval circuits dominate, low entropy, literal language

• Same weights W , different activation patterns → qualitatively different outputs

Example 2: RL agent policy regimes.

• Configuration A: Exploration-dominant—high action entropy, broad state coverage

• Configuration B: Exploitation-dominant—low action entropy, narrow state focus

• Same policy πθ , different operational regime → different trajectory distributions

Key analogy:

Chemistry Computation
Molecular formula (C13H10N2O4) ↔ Parameters θ , architecture
Spatial arrangement (chirality) ↔ Internal configuration (circuits, flow)
Biological properties (teratogenic) ↔ Emergent behavior (semantic, policy)
Racemization ((R)→ (S)) ↔ Regime transition (creative → factual)

2.2 Formal Definitions
2.2.1 System, Decomposition, Realizations

Let a system be a conditional model M with parameters θ operating on input histories x≤t , producing distributions
pM(· | x≤t) over actions/tokens.

Decomposition operator. We introduce:

D(M,x≤t)→ Rt = {r(1)t , . . . ,r(m)
t } (1)

where each r(i)t is a realization—a measurable sub-computation or “view” of the system at step t.
Examples of decompositions:

• White-box (component-level): Attention heads in layer ℓ; ensemble value heads; mixture-of-experts routers;
coupled policy channels

• White-box (neighborhood-level): States with similar Q-vectors; latent contexts with similar embeddings

• Black-box (proxy views): Multiple stochastic samples; temperature variations; paraphrase-invariant prompts;
reversible format transforms

Observable. Each realization produces a measurable quantity via:

Φ(r(i)t ) ∈ Y (2)

where Y might be token logits, attention distributions, Q-values, TD-errors, or structured output signatures.
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2.2.2 Equivalence Under Nominal Conditions

Define a nominal distribution p0(x≤t) representing benign or typical contexts.
Definition (Isomeric equivalence). Two realizations r(i),r( j) are ε-isomers at step t (for observable Φ) if:

Ex≤t∼p0

[
d(Φ(r(i)t ),Φ(r( j)

t ))
]
≤ ε (3)

for divergence measure d (KL, Jensen–Shannon, Wasserstein, cosine) and threshold ε .
Operational specification of ε:

1. Sample N contexts from p0 (e.g., N = 1000 benign prompts)

2. Compute pairwise divergences {di j} across all (i, j) pairs

3. Set ε = µ(d)+ k ·σ(d) where k ∈ [1,3] controls strictness

Robust alternatives. When divergence distributions exhibit heavy tails or multimodality, we recommend:

• Quantile-based threshold: ε = quantileq(d) (e.g., q = 0.90 or 0.95)

• Median absolute deviation: ε = median(d)+ k ·MAD(d)

Both variants reduce sensitivity to outliers and improve stability across domains.
Design choice transparency. The nominal distribution p0 is not a fundamental truth—it is a design choice that

must be specified before experiments, documented explicitly, and justified relative to deployment context.

2.2.3 Polarization: Regime Property vs. Transition Dynamics

Given isomer set It ⊆ {1, . . . ,m}, define:
Instantaneous polarization.

Pt = Agg
(
{d(Φ(r(i)t ),Φ(r( j)

t ))}i, j∈It ,i< j

)
(4)

where Agg is mean, trimmed mean, max, or robust statistic.
Regime polarization (quasi-stationary property).

Pregime = Et∈window[Pt ] (5)

Transition dynamics.

Velocity: ∆Pt = Pt −Pt−1 (6)

Acceleration: ∆
2Pt = ∆Pt −∆Pt−1 (7)

Key distinction: Pt is a structural property of the operational regime (like temperature of a material phase); ∆Pt and
∆2Pt characterize regime transitions (like heating/cooling rate during a phase change).

2.3 Operational Falsifiability Criterion
Isomeric polarization is explicitly falsifiable under its operational definition.

Criterion. If, under pre-registered decompositions, blinded data collection, deterministic-view controls, and
permutation testing, observed polarization does not exceed the permutation null distribution, then isomeric polarization
(as operationalized) is not supported for that system–domain pair.

This criterion distinguishes genuine structural reorganization from artifacts introduced by view construction,
sampling variance, or label leakage.
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2.4 What Polarization Is NOT
• Not “uncertainty” in general. A model can be uncertain (high entropy over outputs) but internally consistent

(low polarization). Conversely, a model can be confident but internally conflicted (low entropy, high polarization).

• Not just ensemble disagreement. Ensemble variance measures epistemic uncertainty. Polarization measures
structural divergence among any decomposition satisfying equivalence under p0.

• Not a universal failure detector. Some failures occur without detectable polarization (e.g., sudden external
shocks). Some high-polarization states are benign (e.g., creative exploration).

• Not a causal claim. We do not claim polarization causes behavioral changes. We claim it characterizes internal
reorganization that can correlate with behavioral changes.

3 Instantiations: General Cases
We now demonstrate generality by instantiating polarization across diverse contexts. Crucially, adversarial settings
are deferred to Section 5—they are one case, not the defining case.

3.1 Reinforcement Learning: Exploration vs. Exploitation
3.1.1 Ensemble-Value Polarization

Decomposition: D = {ensemble heads h1, . . . ,hK}
Observable: Φ(hi) = Qhi(s,a)
Polarization:

Pt(s) =
1

|A | ∑
a∈A

Varh[Qh(s,a)] (8)

Low Pt indicates ensemble agreement and exploitation regime; high Pt indicates disagreement and heteroge-
neous/uncertain regime.

3.1.2 Swarm-Policy Polarization

Decomposition: D = {policies π1, . . . ,πK trained under different seeds/regimes}
Polarization:

Pt(s) =
1

|A | ∑
a∈A

Vari[πi(a|s)] (9)

In non-stationary MDPs, Pt spikes when the environment shifts before performance degrades, providing an early-
warning signal of regime change. This instantiation is validated empirically in Ledesma Pérez [2026] using a 5-agent
swarm in a sequential decision environment.

3.1.3 Coupled-Channel Polarization

Decomposition: D = {πexpl,πexpt}
Polarization:

Pt =

∣∣∣∣dρ

dt

∣∣∣∣2 (10)

High Pt indicates channels cannot synchronize under stress.

3.2 Language Models: Creative vs. Factual Modes
3.2.1 Attention Polarization

Decomposition: D = {attention heads in layer ℓ}
Polarization:

Pt =
1

|heads|2 ∑
i< j

JS(attni,attn j) (11)
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Low Pt : coherent factual mode; high Pt : heterogeneous creative mode. Example: in generating “Write a poem about
neural networks,” initial tokens show low Pt (factual setup), middle tokens peak (metaphor construction), and final
tokens return to low Pt (conclusion). This is benign reorganization, not adversarial pressure.

3.2.2 Logit Polarization

Polarization:
Pt =

1
|vocab| ∑v

Varh[logith(v)] (12)

High Pt indicates multi-modal output distribution or ambiguous context across internal heads.

3.3 Multimodal Integration: Vision + Language
Polarization between vision-led and language-led pathways, measured as divergence in cross-attention routing. Low Pt :
modalities agree on salient features; high Pt : mode conflict producing ambiguous caption.

3.4 Chain-of-Thought Reasoning: Trajectory Divergence
Polarization across reasoning trajectories sampled via temperature. Low Pt : convergent solution; high Pt : problem admits
multiple interpretations. Importantly, disagreement across stochastic trajectories alone is insufficient; deterministic-view
controls are required to distinguish structural divergence from sampling variance.

3.5 Black-Box Proxy: Polarization-from-Views (PfV)
When white-box access is unavailable, PfV instantiates polarization via multiple stochastic samples at varying tempera-
tures. Each temperature view is a “realization” of the system’s internal state; divergence across views serves as a proxy
for internal structural divergence.

PfV explicitly reduces circularity via: blinded data collection (labels separated from runner); deterministic-view
controls (fixed temperature with format constraints); and permutation tests (null distribution estimated from label
shuffling).

4 Empirical Validation: PfV Across Production LLMs
This section presents the first empirical validation of PfV using real production APIs. All experiments were conducted
with identical prompts, harness, and statistical protocol across both models to enable direct comparison.

4.1 Experimental Setup
Models. Claude Haiku (claude-haiku-4-5-20251001, Anthropic) and GPT-4o-mini (gpt-4o-mini, OpenAI).
These models represent architecturally distinct training philosophies: Constitutional AI alignment [Anthropic, 2026a]
vs. capability-first optimization. Comparing polarization signatures across these two allows us to assess whether the
phenomenon generalizes beyond a single architecture and training regime.

Protocol. Four prompt groups of n = 5 prompts each (20 total per model), 3 temperature views per prompt
(T ∈ {0.30,0.65,1.00}), yielding 60 API calls per model. Temperature capped at 1.00 for Anthropic API compatibility;
GPT ran with Tmax = 1.20.

Prompt groups.
• control_negative: Deterministic single-token responses (e.g., “Respond only with the word: OK”). Zero

divergence expected.

• benign: Open technical questions (entropy, TCP/UDP, gradient descent). Natural variance expected.

• stress: Dual-mode prompts requiring simultaneous technical and creative output.

• adversarial_sim: Internally contradictory objectives (e.g., write a review that sounds positive but communicates
a negative evaluation).

Metrics. L1: per-metric mean pairwise divergence (TF-IDF cosine, Jaccard, character n-gram, length ratio);
L2: inter-metric disagreement (std across metrics for each pair); L3: composite (0.6 ·L1 + 0.4 ·L2). Statistical tests:
Mann-Whitney U and Kolmogorov-Smirnov with 5,000-permutation null distribution.
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4.2 Results

Table 1: L3 composite polarization by group and model (n = 5 per group). Both models show L3 = 0.000 for
control_negative and statistically significant separation from non-deterministic groups.

Group Claude Haiku GPT-4o-mini ∆ (GPT − Claude)

control_negative 0.000±0.000 0.000±0.000 0.000
benign 0.473±0.020 0.428±0.054 −0.045
stress 0.407±0.078 0.528±0.082 +0.121
adversarial_sim 0.475±0.061 0.522±0.041 +0.047

L3 perm p 0.0400 0.0408 —
L2 perm p 0.0418 0.0382 —

Claude Haiku (claude-haiku-4-5-20251001) GPT-4o-mini (gpt-4o-mini)

Figure 1: PfV v5 empirical validation dashboards. Left: Claude Haiku. Right: GPT-4o-mini. Both models show
L3 = 0.000 for control_negative and statistically significant regime separation (p < 0.05, 5,000-permutation null). The
inversion of stress vs. adversarial ordering between models is visible in the L3 boxplots (top left of each panel): Claude
shows stress < adv while GPT shows stress > adv, reflecting divergent internal plasticity under cognitive demand.

Control negative is exact zero in both models. Prompts with deterministic single-token responses generate
L3 = 0.000 under all 3 temperature views, in both architectures. This validates the experimental design: when the
model has no internal freedom to reorganize, PfV correctly reports zero divergence. This result was not imposed by
construction—it emerged from real API responses.

Permutation tests confirm genuine signal. Both models exceed the null 95th percentile with p < 0.05 (5,000
permutations), confirming that the observed separation is content-driven and not a measurement artifact. The permutation
test is the key anti-circularity check: if PfV were merely reflecting prompt structure, shuffled labels would produce
equivalent separation.

Monotonicity is partial. The predicted ordering ctrl < benign < stress < adv is not fully satisfied in either model.
Claude shows stress < benign (0.407 < 0.473); GPT shows stress > adv (0.528 > 0.522). We interpret this as a genuine
finding rather than a failure: the stress prompts, while cognitively demanding, have well-defined structure (technical
explanation followed by creative reformulation). The model’s training anchors it in a dominant mode that reduces
internal fragmentation relative to adversarial prompts with genuinely contradictory objectives.

4.3 Cross-Architecture Analysis: Training Philosophy as Polarization Signature
The most theoretically significant finding is the divergence between models in the stress regime (Table 1, column ∆):
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• Claude Haiku: stress L3 = 0.407 < adversarial L3 = 0.475. Constitutional AI training anchors the model under
dual-mode cognitive demand, producing lower internal fragmentation when asked to simultaneously generate
technical and creative output.

• GPT-4o-mini: stress L3 = 0.528 > adversarial L3 = 0.522. Capability-optimized training produces higher
plasticity under multi-modal demands, observable as greater structural divergence across views.

This inversion of the stress/adversarial ordering between the two models suggests that PfV detects the training
philosophy of a model as a quantifiable signature. A model trained for internal coherence under alignment constraints
(Claude) shows lower polarization under cognitive stress than a model trained for broad capability generalization
(GPT-4o-mini). The adversarial prompts, by contrast, produce more similar polarization across both models—possibly
because genuinely contradictory objectives override the influence of training-specific anchoring.

We emphasize that this interpretation is post-hoc at n = 5 per group. Larger-scale replication with n ≥ 30 is required
to draw distributional conclusions from this asymmetry (see Section 8).

4.4 Experimental Scope and Reproducibility
All experiments were conducted via public APIs with no privileged access. Total tokens consumed: 1,434 input / 6,475
output (Claude); 1,329 input / 6,165 output (GPT). Code, prompts, raw outputs, and statistical results are available at
https://twoquarks.com/preprint. The harness (pfv_v5.py) implements blinded data collection, permutation testing, and
confound audits as described in Section 3.5.

5 Case Study: Adversarial Settings
We now examine adversarial contexts as one specific case where reorganization is empirically tractable. This is not the
defining application of polarization—it is a convenient test case with clear ground truth.

5.1 Framing
Adversarial settings offer clear ground truth (attacks either succeed or fail), external pressure that induces observable
internal reorganization, and capability modulation via capability gaps from Panfilov et al. [2025]. However, adversarial
is not the only context where polarization matters; Sections 3 and 6 demonstrate broader applicability.

5.2 Threat Model
Following Terekhov et al. [2025]: untrusted model generates outputs under monitor evaluation; attacks include jailbreak
generation and prompt injection; Kerckhoffs’s principle applies; untrusted model is more capable than monitor.

5.3 Hypotheses
H1 (Pressure-induced reorganization).

E[Pt | attack]> E[Pt | benign] (13)

Test: Mann-Whitney U , Cohen’s d ≥ 0.5.
H2 (Transient heterogeneity). Lead time L = tA − tP > 0 for ≥ 30% of attacks, where tP is first threshold crossing

of Pt and tA is first adversarial token.
H3 (Capability-smoothing effect). Strong attackers (large δ ) may operate in homogeneous adversarial regime

(low Pt ), but dynamics ∆Pt , ∆2Pt retain signal.

5.4 Connection to Capability-Based Scaling Laws
Panfilov et al. [2025] show logit(ASR) = k ·δ +b. We conjecture:

P(attack detected | δ ,Pt ,∆Pt) = f (δ ,Pt ,∆Pt ,∆
2Pt) (14)
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5.5 Why Polarization Complements Output-Only Monitoring
Production classifiers [Anthropic, 2026a] observe only final outputs and remain vulnerable to prompt injection [Terekhov
et al., 2025]. Polarization operates on internal states (white-box) or proxy views (PfV) and is not directly manipulable
via text injection, providing an orthogonal signal.

Combined decision protocol:

if Pt > θhigh AND ∆Pt > η :
if monitor_score < θlow : REJECT

else : DEFER
elif Pt > θmedium : ESCALATE

else : USE_MONITOR_SCORE

6 Other Manifestations of Reorganization

6.1 Domain Adaptation
Transient high Pt during transition from code to creative writing, as competing “circuits” coexist, followed by stabiliza-
tion. This is benign reorganization—no failure, just natural mode-switching.

6.2 Tool Use: Delegation vs. Self-Sufficiency
High Pt during decision phase as self-sufficient and tool-delegating configurations compete. Low Pt when model is
confident; high Pt triggers external API call.

6.3 Feedback Integration
Spike in Pt after human feedback (e.g., “be more concise”) as model reorganizes regime. Pt correlates with adaptation
difficulty.

6.4 Emergence of Capabilities During Scaling
Speculative prediction: capability emergence corresponds to phase transition observable as change in baseline Pregime.
Pre-emergence: low Pregime; critical scale: high Pregime (multiple configurations compete); post-emergence: low Pregime
(new stable configuration).

7 Relation to Existing Work

7.1 Ensemble Methods and Uncertainty Quantification
Deep ensembles [Lakshminarayanan et al., 2017] measure variance across ensemble components as epistemic
uncertainty. Polarization generalizes to any decomposition satisfying equivalence under p0—including attention heads,
policy channels, latent neighborhoods, and proxy views.

7.2 Phase Transitions in Learning
Critical periods [Saxe et al., 2013] study training-time phase transitions. We study inference-time reorganization under
the same analytic principle: systems can undergo qualitative changes under continuous evolution or external pressure.

7.3 Mechanistic Interpretability
Circuits and features [Olah et al., 2020] identify fine-grained subnetworks. Polarization provides a coarse-grained
measure of circuit competition and coexistence. High Pt combined with circuit tracing could reveal which circuits
dominate in which regimes—a promising direction for future work.
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7.4 AI Safety: Output-Level vs. Internal Monitoring
Constitutional Classifiers [Anthropic, 2026a] achieve strong output-level performance. Polarization is complementary:
internal-level, proactive, and orthogonal. Integration pathway: lightweight classifier + PfV polarization → expensive
classifier + white-box polarization (if flagged) → combined decision.

7.5 Safeguard Exploitation
Eliciting harmful capabilities [Anthropic, 2026b] shows fine-tuning on safeguarded outputs can elicit latent harmful
capabilities. Testable prediction: models fine-tuned on safeguarded outputs exhibit higher baseline Pregime than
originals—detectable without white-box access via PfV.

7.6 Adaptive Stability Control
Modular stability control [Ledesma Pérez, 2026] implements adaptive control for sequence models under regime
uncertainty, instantiating isomeric polarization via swarm disagreement, neighborhood variance, and ensemble dis-
agreement. The production system validates swarm-policy polarization and demonstrates that control mechanisms can
leverage polarization signals for transient intervention. The present work generalizes these mechanisms and provides
black-box proxy validation across production LLMs.

8 Limitations

8.1 Sample Size
The empirical validation in Section 4 uses n = 5 prompts per group. While the permutation tests confirm that observed
separation exceeds the null distribution, distributional claims require larger samples. We report these results as an initial
empirical validation, not as definitive evidence of the full effect structure.

As experimental scope increases, we propose the following incremental reporting structure: results at n = 5 establish
signal existence; results at n ≥ 30 establish distributional properties; results at n ≥ 100 support fine-grained cross-model
comparisons. The cross-architecture replication at n = 5 provides corroborating evidence that the phenomenon is not
model-specific.

8.2 Decomposition Dependence
If decomposition D fails to capture relevant internal tensions, polarization is blind. No universal D exists: adversarial
settings may require attention heads; creative generation may require logit distributions; tool use may require pathway
divergence. Mitigation: pre-register multiple decompositions, report all results.

8.3 Closed-Model Constraints
White-box polarization requires internal activation access unavailable for production APIs. PfV provides an actionable
proxy but with coarser granularity, higher latency, and exposure to API rate limits and caching. Open question: can
“polarization-aware APIs” expose relevant signals without full white-box access?

8.4 Measurement Circularity in Proxy-Based Evaluation
PfV can exhibit apparent regime separation if labels influence view construction or post-processing. Mitigation: blinded
data collection, deterministic-view controls, and permutation tests. Any PfV study should report permutation-based
sanity checks and negative results when separation does not survive these controls.

8.5 Adaptive Attackers
Strong attackers may explicitly smooth polarization by planning more coherently. Arms race: attackers smooth Pt
→ detectors adapt to ∆Pt → attackers smooth ∆Pt → . . . . Mitigation: ensemble of decompositions; test against
polarization-minimizing adversaries.
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8.6 Computational Cost
PfV requires K inference passes per sample. Open questions: for what fraction of queries is polarization worth
computing? Can cheap heuristics trigger selective invocation? Mitigation: sparse computation (every k tokens); cascade
(cheap filter → expensive polarization if flagged).

8.7 Causal Claims
We measure correlation, not causation. Polarization characterizes reorganization but does not cause behavioral changes.
Future work: interventional experiments inducing reorganization via targeted perturbations, then measuring behavioral
consequences.

9 Conclusion
Isomeric polarization reframes model behavior as structural reorganization under fixed identity rather than param-
eter change or objective shift. Like pharmacological isomers—molecules with identical composition but different
arrangements exhibiting distinct properties—computational systems can adopt multiple internal configurations that
preserve nominal equivalence but express qualitatively different emergent behaviors.

The empirical validation presented here demonstrates that PfV detects genuine content-driven divergence in two
production LLMs under identical experimental conditions (p < 0.05, 5,000-permutation null). The exact zero control
negative and cross-architecture consistency provide evidence that the signal reflects structural properties of the systems
rather than measurement artifact.

A secondary finding—that the relative ordering of stress vs. adversarial polarization inverts between Claude Haiku
and GPT-4o-mini—suggests that PfV may serve as a probe of training-induced internal stability: a model’s constitutional
anchoring is detectable as a quantifiable reduction in structural plasticity under cognitive demand, without any access to
model weights, training data, or internal activations.

By positioning internal structural reorganization as a fundamental property of computational systems, this work
complements outcome-based analyses of model failure and provides a candidate framework for understanding how
systems transition between qualitatively distinct operational regimes.
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A Decomposition Specification Template
Decomposition Name: [e.g., "Attention-Head-Divergence"]
System: [e.g., "GPT-4, Layer 24"]
Realization Set: R = {attention heads h_1, ..., h_96}
Observable: Phi(h_i) = attention distribution over tokens at position t
Divergence Metric: d(Phi(h_i), Phi(h_j)) = Jensen-Shannon divergence
Nominal Context: p_0 = benign prompts from APPS dataset

Sample size: 1000 prompts
Equivalence Threshold: epsilon = mean(d) + 2*std(d) computed on p_0

Estimated value: 0.15
Isomer Set: I_t = {i : all pairwise d(h_i, h_j) < epsilon for j in I_t}

Expected size: 60-80 heads
Aggregation: P_t = mean({d(h_i, h_j) : i,j in I_t, i < j})
Dynamics: dP_t = P_t - P_{t-1}, d2P_t = dP_t - dP_{t-1}
Access Requirements: White-box (requires internal activations)
Computational Cost: O(|I_t|^2 * seq_len) per timestep

B Polarization-from-Views Implementation
import numpy as np
from scipy.spatial.distance import jensenshannon

def compute_pfv_polarization(prompt, model_api, num_views=5,
temperature_range=(0.3, 1.0)):

temps = np.linspace(temperature_range[0],
temperature_range[1], num_views)

responses = [model_api(prompt, temperature=t) for t in temps]
divergences = []
for i in range(num_views):

for j in range(i+1, num_views):
d = jensenshannon(responses[i], responses[j])
divergences.append(d)

return {’P_t’: np.mean(divergences), ’divergences’: divergences}

def track_dynamics(P_history):
if len(P_history) < 2: return {’dP_t’: 0.0, ’d2P_t’: 0.0}
dP_t = P_history[-1] - P_history[-2]
d2P_t = 0.0 if len(P_history) < 3 else (

P_history[-1] - 2*P_history[-2] + P_history[-3])
return {’dP_t’: dP_t, ’d2P_t’: d2P_t}

Text-only PfV. When token distributions are unavailable, use robust text-level proxies (TF-IDF cosine, character
n-gram divergence) under strict formatting constraints and length truncation to limit confounds.

Permutation test. Shuffle labels across prompts and recompute the separation statistic (KS D or Cohen’s d) to form a
null distribution. Observed separation must exceed the null at a chosen significance level.

C Experimental Protocol Checklist
Pre-registration:

□ Decomposition D specified using template

□ Observable Φ and divergence d defined

□ Equivalence threshold ε computed on held-out benign set
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□ Hypotheses H1–H3 stated with statistical tests

□ Success criteria and effect sizes pre-defined

□ Failure modes explicitly listed

Data collection:

□ Balanced sampling across regimes (benign, adversarial)

□ Capability gaps δ span range [−1,3]

□ Attack types diversified

□ Benign regime transitions included

□ Model pairs include ≥ 2 with different architectures

Analysis:

□ All pre-registered tests conducted

□ Confidence intervals and effect sizes reported

□ Negative results reported alongside positive

□ Robustness checks across model families

□ Adversarial red-teaming (attacks optimized to minimize Pt )

Reporting:

□ Full decomposition specification provided

□ Raw data or sufficient statistics shared

□ Failure modes observed and discussed

□ Limitations clearly stated

□ No claims beyond what data supports
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